

EHPAD Bel Air

12% d'économies d'électricité « Ventilation / Climatisation » avec gain financier d'au moins 2 150 €/an avec de simples réglages

Contexte

Le groupe VYV 3 PDL dont fait partie l'EHPAD Bel Air, situé à la Chapelle-sur-Erdre en Loire-Atlantique a candidaté au dispositif CTEES pour bénéficier d'un accompagnement dans la mise en place d'un programme d'actions visant à réduire leur consommation énergétique.

Dans ce retour d'expérience, nous allons démontrer l'intérêt d'optimiser les paramètres de régulation des centrales de traitement d'air (CTA) généralement présentent dans les espaces communs.

Secteur : ESMS

Catégorie: EHPAD

Statut: Privé non Lucratif

Surface : 4 475 m²

Nombre de places : 86

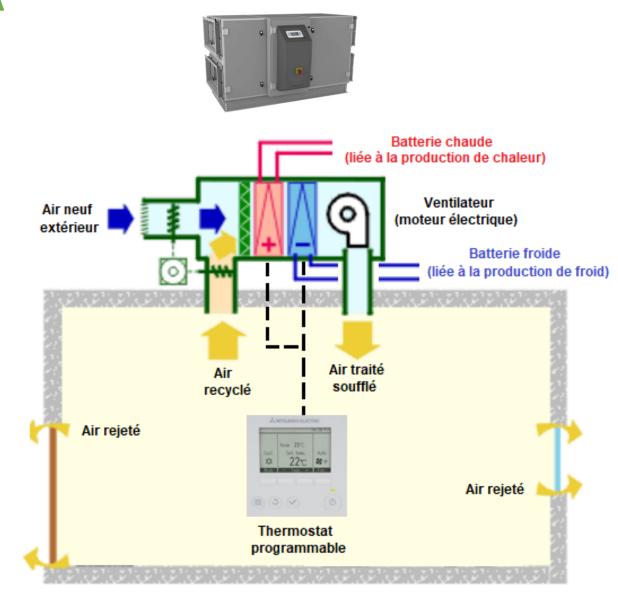
Jours ouvrés par an: 365

Energies sur site : Gaz + électricité

Explication du fonctionnement d'une CTA

Une centrale de traitement d'air (CTA) est un équipement permettant de traiter un débit d'air entrant par rapport à un élément de régulation.

Tout d'abord, prendre de l'air à traiter (air neuf et/ou air recyclé).


Puis, traiter l'air via des batteries (chauffage, rafraichissement, humidification, ...) afin d'atteindre la température de consignes du thermostat (sonde T°C).

Enfin, un ventilateur permet de souffler l'air traité dans la zone considérée via un réseau de gaine.

En général, cet équipement est présent dans les salles à manger et les salles d'activité et est régulé par des thermostats programmables.

Système qui consomme plusieurs énergies :

- HIVER : Chauffage (Batterie chaude) Chaudière : GAZ
- ÉTÉ: Refroidissement (Batterie froide) PAC: ELEC
- HIVER / ÉTÉ : Ventilation (Ventilateur) Moteur : ELEC

Actions réalisées

Constat

La centrale de traitement d'air (CTA) dédiée à la ventilation et à une partie du chauffage de la salle à manger fonctionne en permanance H24/7J alors que cette zone est inoccupée la nuit.

Action proposée

Optimiser les réglages afin d'adapter le fonctionnement à l'occupation réelle de la zone. Dans notre cas, arrêt du ventilateur de la CTA de 21h00 à 08h00 du lundi au dimanche : Réduction du temps de fonctionnement 11h00 par jour.

Constat

Aucun paramètres de régulation sur le thermostat :

- Les utilisateurs peuvent modifier la température de consigne et donc générer des dérives (exemple T consigne hiver = 25°C).
- Pas de programmation horaire donc fonctionnement H24/7J.

Action proposée

Mise en place de paramètres de régulation :

- Bloquer la température de consigne à 26°C en été et à 22°C en hiver afin d'éviter les dérives.
- Arrêt de la climatisation en inoccupation, soit de 21h00 à 08h00.

Impacts énergétiques & financiers

Ventilation: Arrêt de la CTA en inoccupation

P nominale du moteur électrique : 2,7 kW

Programmation horaire: Réduction 11 H/j

Prix de l'énergie électrique : 0,15 €TTC/kWh

Gains estimés : 3 500 kWh 530 €TTC Sur 4 mois

10 500 kWh 1 590 €TTC Sur 12 mois

Climatisation: Température consigne & Programmation horaire

Température consigne « été » = 26°C

Température consigne « hiver » = 22°C

Programmation horaire: Réduction 11 H/j

Prix de l'énergie électrique : 0,15 €TTC/kWh

Gains estimés : 3 700 kWh 550 €TTC Sur 4 mois

Investissement : 0 €HT

FRI brut: 0 mois

80 000

70 000

60 000

50 000

40 000

30 000

20 000

10 000

Electricité : L'arrêt de la CTA en inoccupation (sur 12 mois) et l'optimisation de la régulation de la climatisation (PAC pour la batterie froide) en été (sur 4 mois) permettent une réduction de 12% de la consommation électrique totale. Soit un gains financier d'environ 2 150 €TTC/an pour 0 € d'investissement.

Consommation d'électricité

2020

2019

Consommation d'électricité estivale (juin-septembre) corrigée de la chaleur estivale

2021

-12%

2023

2022

Consommation moyenne d'électricité 2019-2022

Consommation estival moyenne = 67 997 kWh

Thermique: En hiver, l'arrêt de la CTA en inoccupation et la T consigne à 22°C vont également permettent une **réduction des consommations liée à la batterie chaude** et donc de gaz de la chaudière. Les gains financiers qui seront générés ne sont pas estimés dans ce retour d'expérience.

Pour aller plus loin, le dispositif ETE propose ...

Documents

Fiches « Retours d'expérience »

Fiches « Boite à outils »

Webinaires « Replay & Support »

Base documentaire « Dispositif ETE »

Outils

Parcours « Energie »

Etat des lieux & Zoning

Suivi énergétique & Indicateurs

Plan d'actions & « Quick-Wins »

... pour vous informer et vous aider à structurer votre démarche d'efficacité énergétique ... !